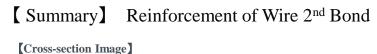
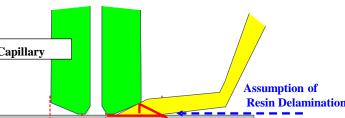
1	Content for Change	(P.2)
2	Specification Change of Wire Bonding	(P.3)
3	Specification of Silicon Resin Coating	(P.4)
4	Improvement Effect Verification	
	(Repetition Test of Reflow + Reliability Test)	(P.5)
5	Evaluation of Circuit Board Mounting	
	(Circuit Board Mounting+ Reliability Test)	(P.6)
6	Changes in Process Flow	(P.7)
7	Electrical and Optical Characteristics	(P.8)
8	Reliability Test	(P.9)

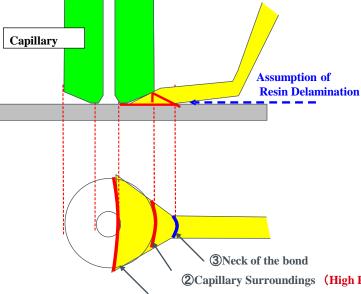
Content for Change


[Change Content]

No.	Item	Before	After				
1	Objective of Change	In reflow process, to level up the resistance of tempera	ature load.				
2	Device Name	LF-301**	LF-3011**				
3	Product Structure	_	Changed the 2nd bonding as double wire bonding Silicon Resin Coating of LED and 2nd wire				
4	Changes on its appearacne (Example on the right)	V A Lot No. 表示面	Changed the showed marking only Lot No. 表示面				
5	Electrical Characteristics	No change of the Specifications and capability					
6	Optical Characteristics	No change of the Spec	cifications and capability				
7	Reliability Test	No problems before	and after the change				
8	SOC: Substance Of Concern	_	Added Silicon Resin				
9	Changes in Process	_	Wire Bonding Process (Double Bonding) Add Silicon Resin Coating				
10	Specification	_	Record double wire bonding in the outline drawing of specification and add silicon resin.				
11	Change in Label (Example on the right)	F 1000pcs 0303 00001Y FOR ROBIN ONLY MADE IN CHINA ROMINETERS TO SECOND	Changed the Device Name LF-3011VA M FOR ROBIN ONLY FOR ROBIN ONLY				
12	Classification	Classified by the	he stock number				



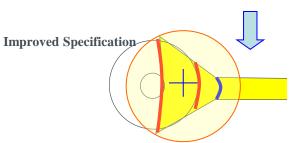
Specification Change of Wire Bonding



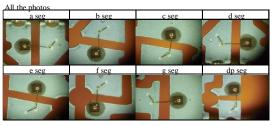
<Photos of 2nd Wire Bonding>

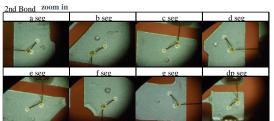
Before (LF-301Series)

After (LF-3011Series)



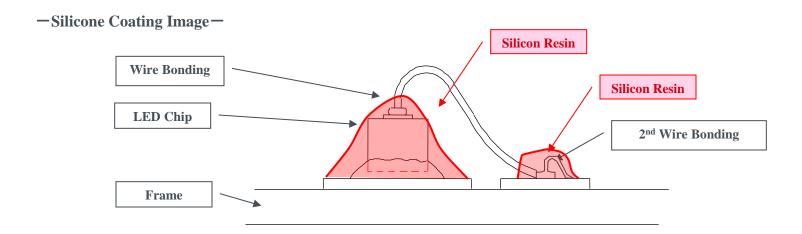
500x 20.0 µ m WD:24.8mm 2.5k

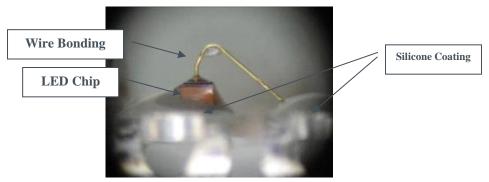

(2) Capillary Surroundings (High Risk of Breakage)


(1) Disconnection of Wire Tip Point (High Risk of Breakage)

(Reinforcement)

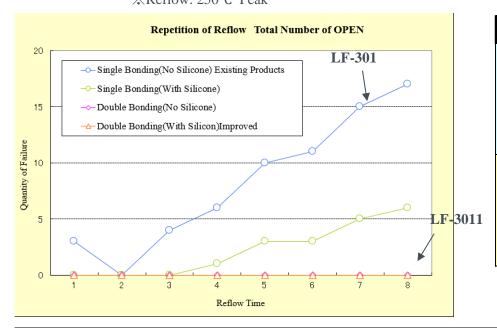
Bond again at the weak points of the wire which has high risk of breakage.




Specification of Silicon Resin Coating

[Silicon Resin Coating Specification]

Coating around the LED chip and 2nd wire bonding with silicon resin


-Silicone Coating Photo-

Improvement Effect Verification (Repetition Test of Reflow + Reliability Test)

(Repetition Test of Reflow Implementation) Implement under the following conditions Verification of the products with Silicon Resin (Yes or No), 2nd Wire Bonding (Double/ Single) *Reflow: 250°C Peak

②Temperature Cycling Test for single article -40°C ~85°C 30 minutes each. No failure after Temperature Cycling Test (Level 4 for evaluation, including the available products) for 500 cycles

Wire Bonding	Si	Quantity	50eye	100cyc	200cyc	300eye	500cyc	
	No	22	0/22	0/22	0/22	0/22	0/22	LF-301 Se
Single Bonding	Yes	22	0/22	0/22	0/22	0/22	0/22	
	No	22	0/22	0/22	0/22	0/22	0/22	
2nd Double Bonding	Yes	22	0/22	0/22	0/22	0/22	0/22	LF-3011Se

Series

Series

WB	Silicone Coating	Peak Temperature	N	1	2	3	4	5	6	7	8
2nd Single	No	250℃	20	3	0	4	6	10	11	15	17
Bonding	Yes	250℃	20	0	0	0	1	3	3	5	6
2nd	No	250°C	20	0	0	0	0	0	0	0	0
Double Bonding	Yes	250℃	20	0	0	0	0	0	0	0	0

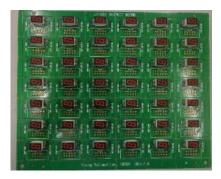
(Result) The effect of Silicone is confirmed. Furthermore, with 2nd double wire bonding, it is confirmed its improvement effect of failure prevention. (Silicon Coating for prevention of LED die bonding delamination) And no failure after 500 cycles of Temperature Cycling Test.

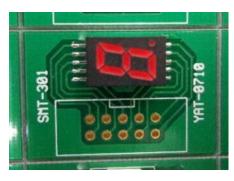
Evaluation of Circuit Board Mounting (Circuit Board Mounting+ Reliability Test)

3 Circuit Mounting Reflow+ Temperature Cycling Test

Sample: Improved Product LF-3011VK (Coated with Silicone + 2nd Double Bonding)

Quantity: $42pcs \times 5$ Circuit


Test Condition: Reflow 250°C Peak


(Refer to photo on the right) Mounted Circuit Board

Temperature Cycling Test

(-40°C/85°C30min each 50cyc,100cyc,200cyc)

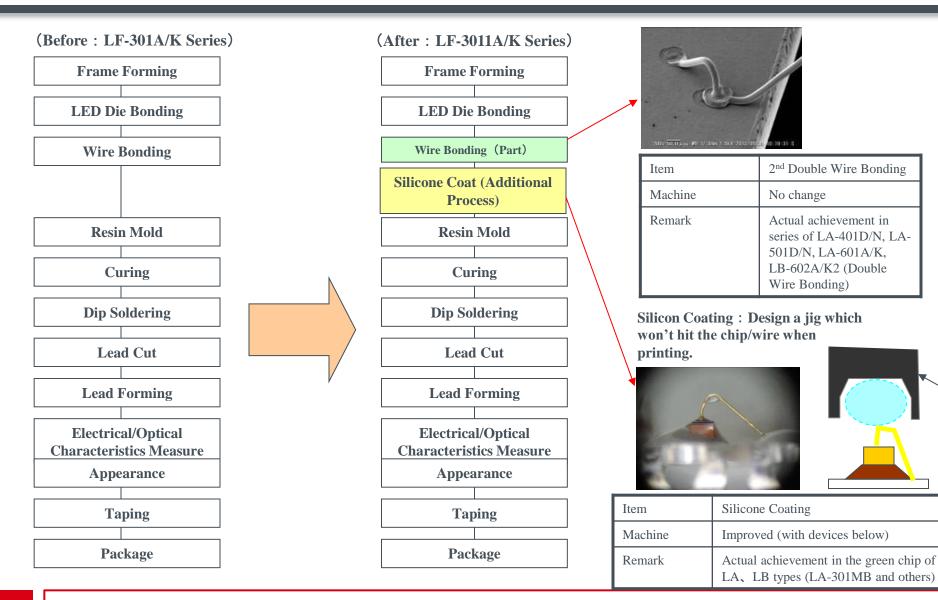
Judgment: Light confirmation at high temperature (about 85°C)

Board Thickness t=1.6mm Grass Epoxy Board

(Result) Light confirmation results of each tests are showed bellow, it is observed no failure of no light after 200cyc of Temperature Cycling Test (mounted).

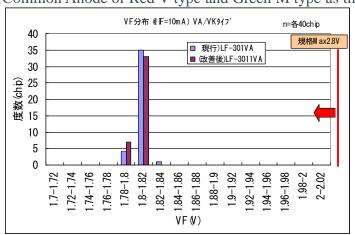
Comple	Overtity	Circuit Board Mounted	Temperature Cycling Test (-40°C/85°C 30min each)				
Sample	Quantity		50cyc	100cyc	200cyc		
Improved Product(Coated with Silicone + 2 nd Double Bonding)	210pcs	Pn/n = 0/210pcs	Pn/n = 0/210pcs	Pn/n = 0/210pcs	Pn/n = 0/210pcs		

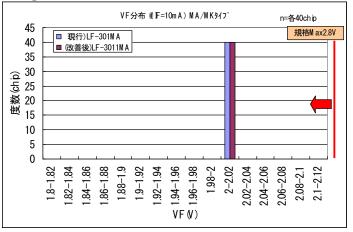
[Consideration]


Confirmed no problem with the product mounted.

ROHM Co., Ltd

Changes in Process Flow




Electrical and Optical Characteristics

[Electrical Characteristics (Voltage Characteristics of Forward Direction)]

The following is the confirmation result of electrical characteristics (VF Value, IF=10mA)

(*Common Anode of Red V type and Green M type as the examples)

(Result)

• VF Value : No significant difference after the resin change There's merit to standard value of specification.

(Optical Characteristics)

• Luminous Intensity Rank : No change (Specification)

Luminance value : No significant difference

• Emission Wavelength : No significant difference

Reliability Test

(Reliability Test)Reliability Test Results of LF-3011A/K Series are showed below

		1. TEST RESULT				
TEST ITEM		TEST CONDITION	n [PCS] (Sample QTY.)	P n (NG QTY.)		
Temperature cycle	-30°C	(30min) ~ 85°C (30min) 100cycle	22	0		
High temperature storage		Ta = 85°C 1000hrs	22	0		
Low temperature storage		Ta = -30°C 1000hrs		22	0	
Load life		I _F = IFMAX Ta = 25°C 1000hrs		22	0	
		2. FAILURE CRITERIA				
ITEM		CONDITION	CRITERIA			
Luminous intensity		I _F = 10mA/Segment	W	/ithin 60% of the initial value		
Forward voltage		I _F = 10mA		hanging rate within ±10% of initial alue.		
			Vo			
Reverse Current		V _R = 3V		ithin maximum of	specification.	
Reverse Current		V _R = 3V 3.JUDGMENT		ithin maximum of	specification.	